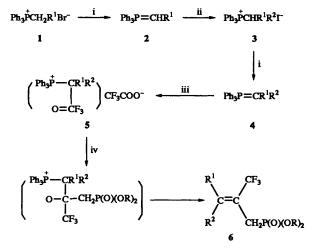
Novel synthesis of trifluoromethylated allylic phosphonates

Yanchang Shen * and Ming Qi

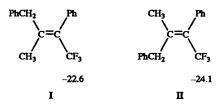

Shanghai Institute of Organic Chemistry, Academia Sinica, 354 Fenglin Lu, Shanghai 200032, China

Trifluoromethylated allylic phosphonates have been synthesized under mild conditions in 56-72% yield by a one-pot reaction of (dialkoxyphosphinoyl)methyllithium with trifluoromethylated β -oxophosphonium salts.

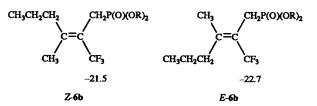
Of phosphoryl-stabilized carbanions the synthetic applications of which are wide,¹ allylic phosphonates occupy an important position.² Thus, they are used in Wittig-Horner reactions for the synthesis of functionalized 1,3-dienes,³ and as new and versatile substrates² for carbon-carbon bond formation. Further, allylic phosphonates upon hydrogenolysis and in conjunction with alkylation provide a stereo selective synthesis of *trans* olefins;⁴ they may also be used in the synthesis of (E)- γ -amino- α , β -unsaturated phosphonates.⁵ However, to the best of our knowledge trifluoroalkylated allylic phosphonates have not been reported previously although they would be expected to be useful intermediates for the synthesis of fluorine-containing biological active compounds.

Results and discussion

In previous papers we have reported that fluorinated β -oxoalkylphosphonium salts when attacked by nucleophiles give rise to tetrasubstituted fluoroalkenes,⁶ fluoroenynes⁷ and α -fluoroalkylvinyl or α -fluoroepoxyalkyl phosphonates.⁸ In our continuing investigations into the exploitation of the synthetic utility of fluorinated β -oxoalkylphosphonium salts in organic synthesis we now report a novel synthesis of trifluoromethylated allylic phosphonates under mild conditions in 60–72% yields by the reaction of (dialkoxyphosphinoyl)methyllithium with trifluoromethylated β -oxoalkylphosphonium salts. The reaction sequence is shown in Scheme 1.



Scheme 1 Reagents and conditions: i, BuLi, THF, -20 °C-room temp.; ii, R²I, room temp.; iii, (CF₃CO)₂O, -78 °C; iv, LiCH₂P(O)(OR)₂, THF, -78 °C-room temp.


The phosphoranes 4, generated from the corresponding phosphonium salts 3 and butyllithium in tetrahydrofuran (THF), were acylated by the addition of trifluoroacetic anhydride to afford the trifluoromethylated β -oxoalkylphosphonium salts

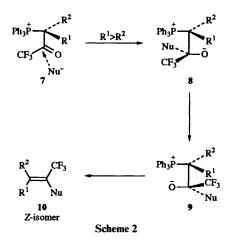
5 which in the reaction medium were attacked by (dialkoxyphosphinoyl)methyllithium. Elimination of triphenylphosphine oxide gave 6 in 56–72 yields. The results are summarized in Table 1.

The configurations of compounds **6a–c** were ascertained on the basis of their ¹⁹F NMR data. Thus, it has been reported that if the trifluoromethyl group is *trans* with respect to the methyl group (II), the chemical shifts of the trifluoromethyl group are downfield, while for the corresponding *cis* compounds (I), the

chemical shifts are in the upfield.⁹ Therefore, the assignments of configuration to compounds **6b** are as shown. The high

stereoselectivity of the reaction may be rationalized in terms of Cram's rule. Thus, the oxygen of the carbonyl group orientates itself between the small (\mathbb{R}^2) and medium (\mathbb{R}^1) sized groups, and the large group ($\mathbb{Ph}_3\mathbb{P}^+$) orientates itself *anti* to the carbonyl oxygen. The reaction is initiated by nucleophilic attack of (dialkoxyphosphinoyl)methyllithium on the carbon of the carbonyl group; if \mathbb{R}^1 is a bulky group the attack is from the rear (the side of the plane containing the small group) of 7, forming the intermediate **8** (Scheme 2).† After rotation at the C–C bond, intermediates **9** are formed with elimination of triphenylphosphine oxide to give **10** as the Z-isomer **6a**.

Experimental


IR spectra of all products were obtained as films on a Perkin-Elmer 983G spectrometer. ¹H and ³¹P NMR spectra were recorded on a Bruker AM-300 spectrometer (δ in ppm from tetramethylsilane and external 85% phosphoric acid for ¹H, and ³¹P NMR, respectively, in CDCl₃, *J* values are given in Hz). ¹⁹F NMR spectra were taken on a Varian EM-360L spectrometer (δ in ppm from external trifluoroacetic acid, in

 $[\]dagger$ An alternative explanation would be a Felkin conformation with the C-PPh₃ bond at 90° to the carbonyl plane and attack occurring alongside the smaller group R². This gives the same result.

Compound					Yield ^b	Ratio
6	R ¹	R ²	R	Method "	(%)	Z: E
a	Ph	Me	Pr ⁱ	A	60	100:0
b	Pr	Me	Pr ⁱ	Α	60	78:22
c	Pr	Me	Et	Α	56	74:26
d	Me	Me	Et	В	65	
e	Me	Me	Pr ⁱ	В	70	
f	-(CH ₂) ₄ -		Et	В	64	
g	-(CH ₂) ₄ -(CH ₂) ₄		Pr ⁱ	В	72	

Table 1

^a Method A: 1 was used as starting material. Method B: 3 was used as starting material. ^b Isolated yields. ^c The ratios of isomers were estimated on the basis of their ¹⁹F and ³¹P NMR spectra.

CDCl₃, positive for upfield shifts). Mass spectra were measured on an HP 5989a spectrometer.

General procedure for the preparation of compound 6

Method A. A solution of the phosphorane 2, generated from the phosphonium bromide 1 (3.0 mmol) and butyllithium (3.3 mmol) at -20 °C in absolute THF (30 cm³), was stirred at 0 °C under nitrogen while methyl iodide (0.43 g, 3 mmol) was slowly added to it. After the mixture had been stirred at 20 °C for 1 h and then cooled to -20 °C, a second portion of butyllithium (3 mmol) was added to it. After this the mixture was again stirred for a further 1 h and then cooled to -78 °C when trifluoroacetic anhydride (3 mmol) was slowly added to it. Stirring was continued at -78 °C for 1 h after which (dialkoxyphosphinoyl)methyl lithium (3 mmol) was slowly added to the mixture which was then allowed to warm to room temperature. After being stirred for a further 1 h and then stored overnight, the mixture was filtered and diluted with light petroleum (bp 60-90 °C, 100 cm³). Filtration and evaporation gave a residue which was purified by column chromatography on silica gel with light petroleum (bp 60-90 °C)-acetone (10:1) as eluent to give the products 6.

Method B. A procedure similar to that in method A was used, but without the first two operations, since the intermediates 3 are available.

Diisopropyl 3-phenyl-2-trifluoromethylbut-2-enylphosphonate **6a**.—Colourless oil; ν/cm^{-1} 2950, 1655, 1250 and 1230; m/z (rel. int.) 365 (M⁺ + 1, 39), 345 (10), 323 (10), 261 (25) and 159 (100); $\delta_{\rm H}$ 7.27–7.34 (m, 3 H), 7.13 (d, J 6.8, 2 H), 4.74–4.80 (m, 2 H), 2.91 (d, J 22.3, 2 H), 2.17–2.19 (m, 3 H) and 1.35 (d, J 6.2, 12 H); $\delta_{\rm F}$ –24.1 (s); $\delta_{\rm P}$ 23.22 (s) (Found: C, 55.9; H, 6.5. Calc. for C₁₇-H₂₄F₃O₃P (364.34): C, 56.04; H, 6.59%).

Diisopropyl 3-methyl-2-trifluoromethylhex-2-enylphosphonates **6b**.—Colourless oil; ν/cm^{-1} 2960, 1655, 1250 and 1230; m/z(rel. int.) 331 (M⁺ + 1.52), 289 (30), 226 (100) and 186 (88); $\delta_{\rm H}$ 4.66 (m, 2 H), 2.74 (d, J 21.9) and 2.72 (d, J 21.9) (2 H), 2.22 (t, J 7.0, 2 H), 1.90–1.93 (m, 3 H), 1.44–1.52 (m, 2 H), 1.28–1.33 (m, 12 H), 0.94 (t, J 7.2, 3 H); $\delta_{\rm F}$ – 22.7 (s, 0.66 F, E), –21.5 (s, 2.34 F, Z); $\delta_{\rm P}$ 23.65 (s, 0.78 P, Z), 24.02 (0.22 P, E) [Found: C, 51.2; H, 7.8. Calc. for C₁₄H₂₆F₃O₃P (330.33): C, 50.91; H, 7.93%]].

Diethyl 3-methyl-2-trifluoromethylhex-2-enylphosphonates **6c**. —Colourless oil; ν/cm^{-1} 2950, 1650, 1250 and 1230; m/z (rel. int.) 303 (M⁺ + 1, 53), 283 (100), 254 (17) and 186 (36); δ_{H} 4.06–4.16 (m, 4 H), 2.81 (d, J 21.8) and 2.79 (d, J 21.8) (2 H), 2.21–2.61 (m, 2 H), 1.90–1.95 (m, 3 H), 1.46–1.53 (m, 2 H), 1.32 (t, J 7.0, 6 H) and 0.94 (t, J 7.2, 3 H); δ_{F} -22.2 (s, 0.78 F, E), –21.1 (s, 2.22 F, Z); δ_{P} 25.71 (s, 0.74 P, Z) and 26.04 (0.26 P, E) [Found: C, 47.9; H, 7.4. Calc. for C₁₂H₂₂F₃O₃P (302.27): C, 47.68; H, 7.34%].

Diethyl 3-methyl-2-trifluoromethylbut-2-enylphosphonates **6d**. —Colourless oil; ν/cm^{-1} 2960, 1660, 1250 and 1230; m/z (rel. int.) 275 (M⁺ + 1, 61), 206 (98), 178 (100) and 138 (27); δ_{H} 4.06–4.23 (m, 4 H), 2.79 (d, J 21.8, 2 H), 1.91–1.97 (m, 6 H) and 1.31 (t, J 7.0, 6 H); δ_{F} –21.5 (s); δ_{P} –25.93 (s) [Found: C, 43.6; H, 6.5. Calc. for C₁₀H₁₈F₃O₃P (274.22): C, 43.90; H, 6.62%].

Diisopropyl 2-trifluoromethyl-3-methylbut-2-enylphosphonates **6e**.—Colourless oil; ν/cm^{-1} 2950, 1655, 1245 and 1225; m/z(rel. int.) 303 (M⁺ + 1, 3), 260 (5) and 178 (100); δ_{H} 4.60–4.76 (m, 2 H), 2.74 (d, J 21.8, 2 H), 1.90–1.97 (m, 6 H) and 1.26–1.34 (m, 12 H); δ_{F} -21.5 (s); δ_{P} -20.2 (s) (Found: C, 47.4; H, 7.3. Calc. for C₁₂H₂₂F₃O₃P (302.27): C, 47.68; H, 7.34%).

Diethyl 2-cyclopentylidene-3,3,3-trifluoropropylphosphonates 6f.—Colourless oil; ν/cm^{-1} 2950, 1660 and 1250; m/z (rel. int.) 301 (M⁺ + 1, 34) and 281 (100); $\delta_{\rm H}$ 4.06–4.15 (m, 4 H), 2.74 (d, J 21.7, 2 H), 2.53 (br s, 4 H), 1.67–1.76 (m, 4 H) and 1.29–1.33 (m, 6 H); $\delta_{\rm F}$ –17.5 (s); $\delta_{\rm F}$ –26.13 (s) [Found: C, 47.9; H, 6.6. Calc. for C₁₂H₂₀F₃O₃P (300.26): C, 48.00; H, 6.71%].

Diisopropyl2-cyclopentylidene-3,3,3-trifluoropropylphosphonates **6g**.—Colourless oil; ν/cm^{-1} 2950, 1660 ad 1245; m/z (rel. int.) 329 (M⁺ + 1, 100), 309 (6) and 287 (22); δ_{H} 4.65–4.75 (m, 2 H), 2.69 (d, J 21.8, 2 H), 2.53 (br s, 4 H), 1.67–1.75 (m, 4 H), 1.25–1.34 (m, 12 H); δ_{F} -17.3 (s); δ_{P} -24.17 (s) [Found: C, 51.3; H, 7.4. Calc. for C₁₄H₂₄F₃O₃P (328.31): C, 51.22; H, 7.37%].

Acknowledgements

Thanks are due to the National Natural Science Foundation of China, Laboratory of Organometallic Chemistry and Academia Sinica for financial support.

References

- 1 B. J. Walker, in Organophosphorus Reagents in Organic Synthesis, ad J. J. G. Cadogen Academic Press, London 1070, p. 155.
 - ed. J. I. G. Cadogen, Academic Press, London, 1979, p. 155; B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, **89**, 863; W. S. Wadsworth, *Org. React.*, 1977, **25**, 73.
- 2 A. M. M. M. Philips and T. A. Modro, J. Chem. Soc., Perkin Trans 1, 1991, 1875.

- 3 G. Lavielle and G. Sturtz, Bull. Soc. Chim., France, 1970, 1369. 4 K. Kondo, A. Negishi and D. Tunemoto, Angew. Chem., Int. Ed.,
- 1974, 13, 407. 5 J.-Y. Zhu and X.-Y. Lu, J. Chem. Soc., Chem. Commun., 1987, 1318.
- 6 Y.-C. Shen and W.-M. Qiu, *Tetrahedron Lett.*, 1987, 28, 449.
 7 Y.-C. Shen and W.-M. Qiu, *J. Chem. Soc.*, *Chem. Commun.*, 1987, 703.

9 Y.-C. Shen and W.-M. Qiu, Acta Chim. Sin., 1993, 51, 1209.

Paper 4/05866F Received 26th September 1994 Accepted 4th January 1995